David Easieyt and John O. Ledyardi
tCornell University, lthaca, NY 14853, and {California Institute of Technology, Pasadena,
CA 91125

THREE
Theories of Price Formation and Exchange in
Double Oral Auctions

We provide a theory to explain the data generated by experiments with
double oral auctions. Our theory predicts convergence to the equilibrium
implied by the law of demand and supply and provides an explanation of
disequilibrium behavior. The predictions of our theory seem to fit the data
better than do the predictions of Walrasian, Marshallian, or game theoretic
models. Our theory also suggests that, in demand-supply environments,
the double oral auction is remarkably robust in the sense that aggregate
performance is similar for a very wide range of individual behaviors.

1. INTRODUCTION

One of the main justifications for the use of equilibrium models in economics is
the argument that there are forces which tend to drive agents and their decisions
towards an equilibrium if they are not at one already. Market equilibrium models
have proven to be extremely powerful in the analysis of many situations; however,
attempts to model and explain the forces that do drive an economy to equilibrium
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have met with little success. Most of the literature on the stability of equilibrium
uses the fiction of a disinterested auctioneer who adjusts a single known price for
each good in response to stated excess demand resulting from agents’ equilibrium
plans. The limitations and defects of this approach are well known: for a survey of
the literature, see Arrow and Hahn.! In addition, as far as we know, the only institu-
tional arrangement that even approximates this idealized model of price formation
is the London gold market (see Jarecki®).

Now, however, a body of data has been generated which provides detailed in-
formation on the disequilibrium behavior of traders in auction markets similar to
those of organized commodity or stock exchanges. These data are difficult to ignore
since they are generated experimentally under controlled conditions, and cannot be
explained away by reference to measurement error, unobserved variables, or other
fudge factors. In the experiment, a small number of traders, each with limited im-
perfect information, determine prices and quantities transacted through interactive
bargains. There is neither a single price nor a single price quoter. Nonetheless, the
quantities exchanged and the prices at which transactions take place typically con-
verge to, or near to, the values predicted by the law of demand and supply. But,
in spite of the fact that the traditional demand-supply model appears to yield rea-
sonably accurate predictions of the long-run average prices and quantities in these
markets, it fails to yield any insights into the process by which these prices and
quantities are obtained.

In this paper we consider several positive theories of the price formation and
exchange process for the class of experimental exchange markets called Double
Oral Auctions.l!l We examine three of these theories in detail and argue that one
of them seems to be the most consistent with the data. The ability of this theory
also to explain price formation and exchange in other markets such as the New
York Stock Exchange depends, of course, on the degree of parallelism that exists
between the two (see Smith??). An astronomer’s maintained hypothesis is that the
physics of the lab is the same as that of the sun; our working hypothesis is that
behavior in experimental markets is similar to that in other markets, and that
insights discovered in the evidence generated in the lab are potentially transferable
to nonexperimental markets with similar institutional structures. Thus, we view
the theory in this paper as a first step towards constructing a positive theory of the
process of exchange and price formation in many other markets.

2. THE EXPERIMENTAL MARKET

In a double oral auction (DOA) experiment, a pool of subjects (usually eight to
twelve) is divided at random into a group of buyers and a group of sellers. The

1i1n fact, some of the auctions are computerized rather than oral. All that matters is that par-
ticipants can make bids or offers and acceptances, and are informed of others’ bids or offers and

acceptances.
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buyers are given value schedules telling them the amount in cents that they will
receive from the experimenter for each unit of the good they purchase. Buyers keep
the difference between their value and the price they pay for that unit. The sellers
are given cost schedules telling them their cost in cents for each unit of the good they
sell. Sellers keep the difference between their selling price and their cost on each unit
they sell. Each subject knows his own payoff schedule but is given no information
about the others’ payoffs. Smith2® shows how these payoff schedules induce demand
and supply schedules. An example of payoff schedules and the induced supply and
demand schedules for one experiment is provided in Appendix A.

After they receive their payoff schedules, subjects are allowed to trade during a
market period of some fixed length, usually called a market day. Buyers can make
bids to buy a unit of the good and sellers can make offers to sell a unit. If a bid or
offer is accepted, a binding trade occurs and all traders are informed of the contract
price. Once a trade is completed, bids and offers can be made for another unit of
the good. No information other than bids, offers, acceptances, and contract prices
is transmitted or known by the participants.

When a market period ends, the subjects are given new payoff schedules, iden-
tical to their schedules for the previous period, and the experiment is repeated.®
Market demand and supply conditions are typically held constant across periods so
that any equilibrating process that exists has a chance to establish an equilibrium.
For a more detailed explanation of auction experiments and the usual results, see
Williams2? and Smith and Williams.*!

These experiments provide a unique opportunity to examine price formation
for two reasons. The first is that, unlike nonexperimental markets, the actual prices
and quantities predicted by the law of demand and supply are known to the ex-
perimenter. Secondly, complete data on bids, offers, contracts, and their timing is
available. An example of a typical design and the data generated is provided in
Appendix A. Demand and supply functions can be calculated from the subjects’
valuations, and equilibrium prices and quantities can then be computed. The first
obvious fact from these experiments is that actual exchange prices are not equal to
those predicted by the law of demand and supply. In a strict sense, demand-supply
theory is rejected by these data. The second obvious fact, however, is that after a
very few replications, transaction prices and quantities converge to near those pre-
dicted by the law of demand and supply. These observations have been replicated
many times. The only conclusion one can draw is that the traditional theory needs
refining before one has a compelling explanation of the observed behavior in these
markets. Not only must “equilibrium” be explained, but we must also explain the
“disequilibrium” transactions, the sequence in which they occur, and the process
by which participants are “learning.”

In our search for a better theory of price formation, we have used several criteria.
Firstly, we wanted the theory to predict convergence to the predictions of the law
of demand and supply for those experiments in which convergence occurs and to
predict nonconvergence in those experiments in which convergence does not occur.

[2lOther designs are also used; see Smith!? and Smith and Williams?! for some of these.
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Secondly, we wanted the theory to be useful in understanding the dynamics of
the adjustment process by making falsifiable predictions about the entire process.
A theory which predicts eventual convergence at T = oo, and nothing else, is
‘consistent with the data but not very illuminating. Third, we wanted the predictions
of disequilibrium behavior not to be at odds with the data. How one weighs these
criteria against one’s prior belief in any particular theory is a matter of judgement.
Our choice will be evident from the theories we reject and the candidate we offer.

3. THREE POSSIBLE THEORIES

Our goal is to understand how the actual dynamics of these markets work, not how
they should work. We recognize that there are a variety of models which purport
to explain price adjustments, but we view the existence of experimental data as an
opportunity to reject a subset of those theories which seem obviously inappropriate.
The set of reasonable theories for these markets can now be constrained by the
data in a way that has been unusual for economics. To see what this means, let us
consider three candidates for a theory of market dynamics.

Since both the institutional description and the data from the experimental
DOA markets reject the Walrasian tidtonnement auctioneer as the appropriate
model of price formation, a natural alternative might be a Marshallian theory.
In a naive version of this theory, the trading sequence depends on the differences
in buyers’ values (willingness to pay) and sellers’ values. In particular, this theory
predicts that trade will occur in the efficient order, i.e., the first trade will occur
between the buyer with the highest induced value (Buyer 1 in the example in Ap-
pendix A) and the seller with the lowest induced cost (Seller 1 in the example in
Appendix A). The second trade is predicted to occur between the buyer and seller
with the second values and costs, and so on. This theory does not predict which
prices will occur, but it does predict that the total quantity transacted will be the
competitive equilibrium quantity. Unfortunately, this theory has little to do with
reality. When we look closely at the microdata, we see that the theory is soundly
rejected. A cursory glance at the summary data of Appendix A should convince
even the most skeptical reader that the predictions of the naive Marshallian theory
are not at all consistent with the data. (In IPDA14, the rank correlation coefficient
between the order of the true values and the order of the transactions is .369 in
week 1 and .273 in week 2.) This is an excellent example of a case in which the
experimental setup allows us to test more hypotheses than would be possible if we
only had access to nonexperimental market data. Testing the prediction concerning
the order in which participants are involved in transactions would be impossible
without explicit knowledge of the individual valuations.

A second candidate for a theory is found in Friedman® who takes an alternative
approach to the problem by redefining the experiment. He studies one day of a DOA
with traders who are allowed to resell or repurchase the good being traded. Under
a no-congestion condition which requires that at the day’s end no trader wants to
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reset the closing bid or ask prices or accept the outstanding bid or ask, he shows
that the final allocation will be at most one transaction away from being Pareto-
optimal. No congestion implies that the final ask be no more than the second-lowest
cost of selling a unit, the final bid be no less than the second-highest value of buying
a unit, and that no one wants to accept the final prices. With resale and repurchase
allowed, this insures that all but perhaps one infra-marginal unit has traded and
that no more than one extra-marginal unit has traded. Beyond the question of
the appropriateness of the no-congestion assumption, the difficulty in applying this
theory to the DOA experiments is that the theoretical conclusion relies heavily
on the agents’ ability to retrade, while retrading is not allowed in many of the
experiments. The theory also finesses the issues of learning and dynamics. How no
congestion occurs is left unexplained.!3!

A third candidate for a theory would be a model based on game-theoretic con-
siderations. For most of the DOA experiments, there is a complete-information Nash
equilibrium (with price-quantity offers or bids as strategies) in which all trades take
place at the competitive equilibrium price. However, the use of a Nash equilibrium
concept to describe the experimental market has two difficulties. Firstly, the data
are Tiot consistent with this equilibrium (not all trades occur at the competitive
price). Secondly, the participants in the experiments do not have enough informa-
tion to calculate the strategies required to support this equilibrium. (They would
have to be able to calculate the competitive equilibrium price.) Thus, one must
turn to models with asymmetric information.

In the experiments which have been run, details on others’ payoffs (and thus
on the competitive equilibrium) may only be inferred by the subjects from the
public data on bids, offers, and contracts. Thus, the structure in which subjects
find themselves is a dynamic game with incomplete information. If an equilibrium
were calculated for this game, its predictions could then be compared with the
data. We feel that there are at least three difficulties with using this approach to
construct a positive theory of double oral auctions. Firstly, as common knowledge
about the distribution of valuations and the strategies selected are not controlled in
the experiments, it is not clear how to apply game theory, as it currently exists, to
the experiments. These are games of incomplete information: they are not games of
imperfect information.!* One could try to ignore this problem and assume that there
is, at some level, common knowledge. However, this leads to the second difficulty.

'3/In an important recent paper, Friedman? has filled in this gap with a model based on search-
theoretic principles. We discuss this interesting model in more detail below in Section 4.D.

4In his seminal articles, Harsanyi? was very careful to differentiate between incomplete and
imperfect information. Beginning with a game of incomplete information, he converted it to a
game of imperfect information from player i’s point of view. There was no guarantee, absent an
assumption of objective common knowledge, that the game from i’s point of view would be the
same as the game from j’s point of view. Therefore, without the common knowledge hypothesis,
players can be surprised on the equilibrium path: they discover that they are in an entirely different
game tree than they thought they were. At this point Bayes' rule provides no guidance and players
can do anything. With this freedom, one can make any outcome of the experiment a Bayes-Nash
(cont'd.)
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With an assumption of common knowledge, the natural model is the Bayes-
Nash equilibrium. If the subjects are risk neutral, we know from Gresik and
Satterthwaite® and the revelation principle that any Bayes-Nash equilibrium has the
_ property that no extra-marginal units are traded when subjects only own one unit
of the commodity. Yet in the experiments, extra-marginal units are often traded
(see, e.g., the data from IPDA14 in Appendix A). If the subjects are risk averse,
then we know from Ledyard!? that virtually anything can be an equilibrium. If risk
attitudes are not controlled for (see Roth and Malouf'”), then the game-theoretic
model explains everything.

Our third difficulty with the game-theoretic approach is that, as far as we
know, no one has solved for an equilibrium of the appropriate game. Wilson?? has
found strategies for a one-shot version of the DOA which satisfy the necessary
conditions for a Bayes-Nash equilibrium. However, Wilson’s model predicts that
the rank correlation coefficient between the order of true values and trades is one
which, as we noted above, is strongly at odds with the data. But the experimental
DOAs are repeated, common knowledge is not controlled for and subjects may not
be risk neutral as Wilson assumes. Under these circumstances, it is not fair to
compare Wilson’s predictions with the data. It is also unfair to expect much from
the general approach.

Since neither the Marshallian model nor the Friedman model, nor any currently
available game-theoretic model appears to be appropriate as a positive theory, and
since the goal of building an appropriate game-theoretic model has eluded us and
others, development of an alternative model seems warranted. We turn to that next.

4. A POSITIVE THEORY
A. PRELIMINARIES

A participant in a double oral auction experiment has a complex decision problem.
He must decide when to bid, how much to bid, and whether or not to accept the
trades offered by other subjects. Further, all of these decisions must be made with
very imperfect information. The subject does not know the payofis or expectations
of other agents, he does not know the terms of trade that will be available to
him in the future, and he does not know the effect of his actions on the actions
of others. This is a very complex interactive decision problem with incomplete
information in which individuals must choose bidding and acceptance strategies.
To place some structure on this problem, we first introduce some notation and
definitions concerning the data known to both the experimenter and us.

The true payoffs or values given to buyers are integers and are ranked as vi>
V2 > ... > V™ >0, where V' is the ith highest value and there are n units. A buyer

equilibrium of the incomplete information game without objective common knowledge. We show
how to do this in footnote 12.
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b will be assigned a subset of these units V®! > V2 > ... > VB and will trade
them one at a time in the sequence b1, 2, ...,bB. No recontracting is allowed. The
true costs given to sellers are integers and are ranked as 0 < M laM?2<...<M™,
where M7 is the cost of the jth unit and there are m units. A seller will be assigned a
subset of these units and will trade them one at a time. No recontracting is allowed.
It should be noted that typically the values, V* and costs, M, are assigned once
and remain fixed. Each buyer (seller) knows only his own values (costs) and no
participant is given any information as to how these values and costs were chosen.
There is no basis for common knowledge assumptions about independence of values
or their distributions. Consequently, we neither make such assumptions nor use
these concepts in our theory.

Market period or days for an experiment are indexed by d = 1,2, .... The time
remaining in any given day is indexed by ¢ = 0,1,...,T. Contract prices, bids, and
offers are in integer units in the interval [0,H], where H < oo is some arbitrarily
selected upper bound above V! and M™, and during any particular day, d, each
participant observes all contract prices, bids, and offers.!5;

To summarize, each buyer knows the rules of the auction, the value of his own
units, and the sequence, timing, amount, and identity of all past bids, offers, and
contracts. It is these data alone on which the buyer can base his decisions to bid
and to accept. A symmetric remark applies to each seller.

B. AN INTUITIVE LOOK

We adopt the spirit of both revealed preference theory and demand-supply analysis
by placing assumptions on individual behavior which, we believe, are consistent
not only with optimal behavior but also with a vast range of “boundedly rational”
rules-of-thumb. We do not model how agents should make their decisions. Instead,
we provide criteria which, we believe, sensible individuals in these markets act as if
they satisfy. This allows us to construct a theory which is robust to a wide variety
of individual behaviors and yet which is reasonably sharp in its predictions about
the data. We model “reduced form” behavior by decomposing the decision problem
into three main elements: expectations, reservation prices, and bidding strategies.
These are most easily explained in reverse order.

Assume that at each instant of time, there is for each buyer (seller) a reserva-
tion price, possibly different from his true value, which summarizes his willingness
to bid up (offer down) to that price or to accept any offer up (bid down) to that

[5] Each participant also observes the timing of each contract, bid, and offer. It is highly probable
that the timing of these events is an important piece of information which affects the actions of
the buyers and sellers. However, the level of complexity required to incorporate timing into the
model seems to outweigh the gains to be achieved. Thus, we ignore it throughout the paper.
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price.l If each participant has such a reservation price as a function of time, the
buyers’ side of the double auction can then be thought of as proceeding like an
ascending bid (English) auction, with these reservation prices substituting for the
true values. After some period of time, the outstanding bid will always be held by
the buyer with the highest reservation price (not necessarily the highest untraded
value), and that bid will be at least as high as the second-highest reservation price.
Otherwise, the holder of the second-highest reservation price will bid, causing the
holder of the highest reservation price to rebid, and so on. We find it unnecessary to
explicitly model this process, and we assume that it occurs instantaneously. Thus,
all observed bids will be the reduced form results of the above English auction.
Since we have also assumed that the buyer is willing to accept any price lower than
the reservation price, an acceptance of an offer will occur whenever that offer is
lower than the highest reservation price of a buyer. To make the theory as simple
as possible, we assume the buyer with the highest reservation price moves instanta-
neously faster than any other buyer. (This is only a restriction if offers jump down
in large discrete increments and several buyers have similar reservation prices—a
situation likely to occur only in the opening minutes of any trading day.) This in-
tuitive view of the bidding is formalized in Assumption 1 below. Sellers’ offers are
viewed symmetrically in Assumption 1"

Since bids and offers depend on reservation prices and not directly on the in-
duced values, bids and offers ultimately depend on the relationship between reser-
vation prices and the data observed by each agent. This relationship is assumed to
depend on two principles of learning. Firstly, it is true under Assumption 1 that
whenever the bids and acceptance prices of a buyer are higher than were necessary
to complete a transaction, the buyer completes a trade but overpays. We assume
that a buyer will realize that he overpaid and will, during the next auction, lower
his reservation price. If it is not lowered too much, the buyer should still be able
to complete a transaction but at a better price. Secondly, it is true that if a buyer
waits too long to bid or, what is the same thing, maintains too low a reservation
price during the day, then that buyer may not complete a transaction even though
profitable ones are available. We assume that if a buyer could have purchased a
unit at less than its value to him, V% but did not, then that buyer will realize he
underbid and will, either that day or during the next auction, raise his reservation
price at each time of day. It is the delicate balance between “paying too much”
and “not offering to pay enough” which the buyers must learn in order to be suc-
cessful in the auction. We do not explicitly model this learning process; instead,
we provide assumptions about reservation price behavior which, if satisfied, reflect
these learning principles. We summarize this rather simple intuition in Assumption
2 below.

6] A more sophisticated theory might distinguish between the amount a buyer is willing to bid
and the lowest offer he would accept. In particular, buyers may not be willing to bid up to their
reservation price (see Wilson??). This distinction could be easily incorporated into our model, but
it is not apparent that it would add to the explanatory power of the model.

R .. e
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c. BIDDING BEHAVIOR

We start our description of the formal theory with the introduction of a hypothesis
concerning the existence of the key unobservable of our model. It is important to
realize that we treat reservation prices in this paper in the way that preferences are

enerally treated in economics. We cannot observe whether subjects really compute
reservation prices; we can only assume they act as if they do. For a coherent theory,

the reservation prices may need to be related in a systematic way to the true values
put, a priore, do not need to be.

ASSUMPTION 0: RESERVATION PRICES. For each buyer unit and seller unit, there
;s an (unobservable) reservation price at each day d and time ¢, denoted ri(t) € R!
for buyers and s%(t) € R! for sellers.

Assumption 0 only contains notation. To link the unobservables to the data,
we need to tie the bids and acceptances to the reservation prices, and then to tie
the reservation prices to the true values and costs. As we indicated in the previous
section, this is done by assuming that, given reservation prices, bids and acceptances
are the reduced form of English auction behavior.

ASSUMPTION 1: BUYERS' BIDS AND ACCEPTANCES.

i, ba(t), the current outstanding bid in day d, with time ¢ left, is held by buyer ¢*
where i (t) > ri(t), foralli=1,...,n.

il ba(t) <74 ().
iii. ba(t) > ri(t), for all i # 7"

iv. Buyer i* accepts the current outstanding offer, 04(t), if and only if og(t) <
¥ (t). No other 7 accepts o04(t).

Simply stated, at each point in time, the current bid is held by the buyer with
the highest reservation price—not necessariy the buyer with the highest true value.
This bid lies below that reservation price and above the second-highest reservation
price. Under Assumption 1, and 1’ below, trades always occur between the buyer
with the highest reservation price and the seller with the lowest reservation price.
We emphasize that these need not be the buyer with the highest value and the seller
with the lowest cost since the English auction is based on reservation prices and not
on the “true values,” V* and M.

For completeness, we make an assumption on the offers and acceptances of
sellers that is symmetric with that made for buyers. The only difference is that
we have arbitrarily assumed that if seller j* is willing to accept bg(t) and buyer *
willing to accept o4(t), then the buyer accepts first. We could reverse this without
affecting the conclusions to come.
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ASSUMPTION 1 SELLERS' OFFERS AND ACCEPTANCES.

i. 04(t), the current outstanding offer in day d, with time ¢ left, is held by seller
3* where s-;.(t) <gt), forall j=1,...,m.

i ou® 2 ).
“iil. og(t) < 84(t), for all § # 5*.

iv. Seller j* accepts the outstanding bid, ba(t), if and only if ba(t) > s{(t) and
buyer i* does not accept 04(t). No other j accepts ba(t)-

We do not yet have a testable theory since, given any sequence of bids and
contracts, it is possible to construct a sequence of reservation prices which, under
Assumption 1, would imply the given data precisely. Unless we place some restric-
tions on the reservation prices, we can explain anything, and therefore nothing.

D. RESERVATION PRICE FORMATION

We now tie the theory down by restricting reservation price behavior in a way which
relates it to observable data. This is the way in which we connect bids, contract
prices, and the sequence of trades to the initial data known by the experimenter
and, thus, provide testable propositions about these auctions.

Reservation prices are assumed to be formed in accordance with the intuitive
principles outlined in Section 4.B. We begin by assuming that a buyer’s expectations
in any period are based on the prices of the previous period. In particular, we assume
that the support of the buyer’s expectations is the set of prices bounded by the
maximum of last period’s highest contract price or highest bid, and the minimum
of last period’s lowest contract price or lowest offer. Based on these expectations,
reservation prices are formed over time as follows: (a) for most of a trading day,
one’s reservation price lies below the true value, Vi and within the support of
the expectations (when this is feasible), (b) if possible, the reservation price is
actually below the maximum price in the support since the buyer does not want to
“overpay,” (c) eventually, if no contract is agreed to, buyers will cave in and let the
reservation price rise and approach the maximum price in the support, and (d) if
still no contract is completed, the reservation price will rise higher than even the
maximum in the support of the expectations.

The sequence of actions (a), (b), and (c) are consistent with optimal behav-
jor in finite-time, nonstrategic search models.'” If a buyer believes that offers are
identically and independently distributed on [P, P], no matter what he does, and
that he will receive a finite number of draws of offers with replacement, it is really

7' For examples of this literature see Gronau,® Lippman and McCall, 112 Mortensen,!? and Cox

and Oaxaca.?

o e— v

P



st

Theories of Price Formation and Exchange in Double Oral Auctions 73

easy to show that his reservation price satisfies (a), (b), and (c).® A buyer who is
certain that he can complete a trade at P will only move his reservation price to
Patt=0,the end of the day. If he could not _gomplete a trade at this point, he
would presumably be willing to pay more than P as he now knows that his beliefs
are incorrect. In (d) we assume that he reaches P before ¢ =0, perhaps because he
js not certain that a trade can be completed at P.

Before formalizing our assumption on reservation prices, we need to introduce
some notation. If a trade occurs at time t of day d, we let c4(t) be the contract
price. Then for each day d > 1, let P, = Min{oa-1(t),ca-1(t) : t = o0,....T}
and Pa = Mg,_x{bd_l(t),cd_l(t) :t=0,...,T}. We assign [P,, P1] = [0, H]. The
interval [P 4, P4] is interpreted as the support of traders’ price expectations in day
d. Let APy=P4— P,

ASSUMPTION 2: BUYER'S RESERVATION PRICE FORMATION. For all buyers i =
1,...,7

i, If i has traded (accepted an offer or had a bid accepted) in day d before time
t, then ri(t) = 0.

ii. For each day d there is time f; > 1 such that, if 7 has not traded in d before ¢,
then:

a. For all tzti;
Min{V*, Pa} > ris(t) > P4 if APg >1and V' > Py;
Min{V*, Py} > r4(t) > Min{V*, P ;} otherwise.

b. ri(ty) = Min{V*,Pq - 1}.

c. Forallt <ty
ri(t) = Min{V*,ba(t + 1) + 1} if
ba(t + 1) € {P4, Pa— 1} and ba(t + 1) unaccepted;
ri(t) € {ri(t +1), Min{V*,ba(t + 1) + 1} } if
ba(t +1) > P4 and by(t + 1) unaccepted;
ry(t) = ry(t + 1) otherwise.

Assumption 2(i) sets the reservation price for traded units to zero to indicate
that they have left the market. The conditions in Assumption 2(ii)(a) embody the
intuition that, as a result of learning, reservation prices will not be “too high” early
in the trading day. The conditions in Assumption 2(ii)(b,c) embody the intuition
that, towards the end of the day, if the buyer has not completed a transaction, then

18 Recently, Friedman? has provided a model of the double oral auction in which agents are
Bayesian and expected utility maximizers who ignore the strategic feedback effects of their own
actions. He derives reservation strategies which provides a choice-theoretic underpinning to our
model. (See Friedman,? p. 57-58.) The main difference between his model and ours lies in our
use of bounds P and P on the support of possible prices (he assumes priors are positive over all
prices [0, H]) and property (d) which describes what happens when, as a Bayesian, the buyer is

surprised that no offer is in [P, _}3]. (Friedman’s agents are never surprised.)
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that buyer will learn to raise his reservation price slowly. Towards the end of the
day, reservation prices will not be “too low.” (9!

To complete the model we make a symmetric assumption about sellers’ reser-
vation prices which we call Assumption 2"

ASSUMPTION 2’: SELLERS RESERVATION PRICE FORMATION. For all sellers 5 =
1,...,m:

i. If j has traded (accepted a bid or had an offer accepted) in day d before time
t, then s(t) = P

ii. For each day d there is a time f'; > 1 such that, if 5 has not traded in day d
before time ¢, then:

a. Forallt> i ' _
Max{M’, Ps} > sy(t) > Max{M7,P } if AP; > 1 and M7 < Pyg;
Max{M7, Py} > si(t) > Max{M7, P ;} otherwise.

9lOur assumptions on reservation prices can also be stated with a simple, Markov information
structure. The only information used from past days is (P ;, P,). The only information used from
the current day is the previous bid, offer, and contract price, and an indicator of whether the
individual has traded. Let the trade indicator for individual i at time t of day d be h} 4 (1),

where h(T) = 0 and hy(t — 1) = hi(t) + { 1 ifitradesat
0 otherwise.

The information from the current day is then I;(t) {ba(t), 0a(t), ca(t), hi, 2wt} forany t < T
and I;(T) ¢. Any trader’s reservation price evolves according to a transmon probability which
is time and information dependent and parameterized by the trader’s value and (P g4, Pgq). To
simplify the notation we drop the indices i and d, and we consider the problem from a typical
buyer’s point of view. The distribution of the buyer's reservation price at time t, r(t), is given
by RUI({t+ 1), t, r(t+1)). Let A= {r €0, P] : Min(V, Pyg—1)>r>Min(V,P,) if APy >
1 and Min(V,ﬁd) > r > Min(V, P ) otherwise}. Then we can write Assumption 2 equivalently
as
Assumption 2*: Buyers’ Reservation Price Formation.
() If h(t+ 1) =1, then R(I(t+ 1),t,7(t+ 1))(0) = 1.
(i) Ifr(t+1) € A, h(t+1)=0,and b(t+1) < Py-1,

or b(t) = ¢(t), then fA dR(I(t+ 1), t,r(t+ 1)) = 1.
(iii) For any r > Py — 1, R(I(t+1),t,r(t+ 1))(r) =0

ifr>r(t+1)+ 1
(v) fr(t+1) < V, bt +1) € [Py~ 1,P4l and b(t + 1) # c(t + 1),

then R(UJI(t+ 1),t,r(t + 1))(r(t+ 1)+ 1) = 1.
(v) There is a t* > 1 such that if A(t* + 1) = 0, then

Z RU(® + 1), t% r(t* + D)(r) = 1.

r>Min(Pg—1,V)

Either 2 or 2* can be used in the rest of the paper; we use 2.
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b. s4(F) = Max{M?, P 4+1}.

c. Forallt <y
sh(t) = Max{M7,04(t +1) — 1} if
" og(t+1)€{P4, Py+1} and oa(t + 1) unaccepted,;
- si(t) € {sh(t+1),Max{M7, oq(t + 1) — 1}} if
_ o4(t +1) < P4 and o4(t +1) unaccepted;
s%(t) = s(t + 1) otherwise.

Assumptions 1, 1/, 2, and 2’ constitute the full set of premises for our theory.
One obvious and intended omission is any (direct) tie between reservation prices and
valuations—other than the cbvious constraint that buyer i’s reservation price be less
than i’s value. In particular, we make no assumptions about the relative rankings
of values and reservation prices.’? While such an assumption might tighten the
predictions of the model, most of the theorems we are interested in and most of
the implications consistent with the data do not require it. We think this is an
attractive feature of the model in that decision making is decentralized. Agents
need know nothing about each other but only need to look at observable data to
decide what to bid and whether to trade. Convergence to competitive equilibrium
under these conditions simply highlights the robustness of the double oral auction
as a market institution. Any monotonic link between values and (even randomized)
reservation prices would require some coordination between the agents. This in turn
would seem to require some prior beliefs on values and a common strategy. This is
unnecessary and inconsistent with the spirit of our analysis.

We have made two implicit assumptions which should be recognized. First
of all, we assume that each buyer’s and seller’s behavior is independent of the
total number of participants in the market. That is, a buyer’s choices of bids and
acceptances are the same whether he is a monopolist or one of 100 buyers. Although
this runs counter to conventional economics, experimental evidence suggests that if
the number of buyers and the number of sellers are both greater than two, then this
assumption is satisfied. Further, even if there is a single seller, what little evidence
there is suggests that the model we propose may still be appropriate. We leave as
an open empirical question just how few participants, if any, are needed before our
theory is not applicable.

The second implicit assumption is that buyers and sellers with multiple units to
purchase or sell will decide on strategies for each unit separately. That is, the bids
and acceptances a buyer makes for his, say, highest valued (first) unit are assumed
to be independent of the total number of units he may want to buy. This is not
“rational behavior,” but the interaction effects are difficult to model (we know of

10] Ay, example of such an assumption is [V* > VI] = fri(t) > ri(t)] Y d, t,1,j. This particular
hypothesis, which is closely related to the hypotheses of the Marshallian model and game-theory
models, yields predictions seriously at odds with the data. See Section 7 for other possible con-
nections between valuations and reservation prices.
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no literature which does this:!1.). The simplicity this assumption gives the theory
is, we feel, well worth the price.!12

A question that naturally arises is whether optimal behavior for a game-
theoretic formulation of the DOA is consistent with our behavioral rules. Since this
would be a dynamic incomplete-information game, and since the common knowl-
edge that is an integral part of recent game theory is not controlled for in the
experiments, current theory provides little guidance. However, as we indicated in
section 3, footnote 4, if one recognizes the important difference between a game
of imperfect information with objective common knowledge priors and a game of
incomplete information, then one can understand how Bayesian game theory is
consistent with our rules. In particular, even assuming risk neutrality, we can con-
struct a vector of strategies, one for each agent, such that i’s component of a Bayes
equilibrium for the DOA game from t’s subjective point of view, such that revisions
in beliefs as the game is played using these strategies satisfy the Bayes’ rule on
nonzero probability events, and such that the trades, bids, and offers are consis-
tent with Assumptions 1, 1’, 2, and 2’. Because of the absence of objective common
knowledge, agents may be surprised, even on the equilibrium path, but neither the
Bayes rule nor the Bayes-Nash equilibrium prevents this possibility.i!3 Neverthe-
less, we do not believe that this game-theoretic behavior is what subjects in DOA
experiments are really doing. Thus we prefer to analyze our more general model

11]Noussair!® has recently solved this problem for a uniform-price sealed-bid mechanism, but it
remains unsolved in general.

”2]Holt, Langan, and Villamil® report a series of experiments in which traders had multiple
units with payoffs structured to give some traders market power on some units. Their data are
nonetheless reasonably consistent with the predictions of our theory. So our implicit assumption
that traders decide on strategies for each unit separately seems not to be at odds with the facts.

{13 We describe the equilibrium from one agent’s point of view. Suppose that every trader believes
that values are drawn such that two or more buyers and sellers have p* as their value and that
S(p*) = D(p*). (This is the way a typical experiment is set up. The only new feature here is
having all traders believe the same p* and believe it with certainty.) Further, suppose that this
subjective belief is common knowledge. Consider a buyer’s strategy which is to bid p* if V > p*,
to bid V if p* > V, to accept any offer o < p* if 0 < V, and to reject any offer o > p*. The buyer
is assumed to follow this strategy forever and sellers are assumed to follow symmetric strategies.
To complete the description of an equilibrium, we have to describe the updating of beliefs. With
the proposed strategies any bid above p* or offer below p* is a zero probability event so the Bayes
rule has no implications in this case. Let pj; be the common believed price for day d with p}, = p*.
If no zero-probability events are observed in d, then pj b1 = py. If any zero-probability event

is observed, let p;+1 be one of the zero-probability prices in (Bd,ﬁd). The claim is that these
strategies and updating rules define a Bayes-Nash equilibrium. Consider any buyer. He knows
that his bids can affect beliefs only if the bids are above pj. But this is undesirable, at least until
the end of the day, as a high bid has him paying more than he believes is necessary and can only
raise future prices. At the end of the day, a buyer who does not hold the outstanding bid of p}
knows that he cannot trade at p} as he believed. (This will happen if and only if there are two or
more buyers who have not yet traded at T — 1. Further, the buyer who will not be able to trade
as expected knows who he is.) This is a zero-probability event (according to his belief) so he can
plan to do anything in this contingency. To complete the description of the equilibrium strategy,
we assume that he bids p}, + 1 if p}; +1 < V and V otherwise. (cont’d.)

o e P P
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recognizing that one set of behavioral rules satisfying Assumptions 1, 1, 2, and 2’
consistent with a game-theoretic treatment.

Now a final observation. We believe that there are traders in the experiments
whose behavior is, at least for a few iterations, vastly different from behavior which
would be consistent with our assumptions. In particular there are traders, who
hold out for a highly profitable trade to the end of the day even though they never
complete one. These traders usually modify their behavior after a few days. Those
who do not lose a considerable amount of opportunity income. We do not attemnpt
to explain their irrationality.

We turn now to the derivation of a number of testable implications of the
theory. We then confront these with the data from a small number of representative
experiments. At that point, the reader should be able to decide whether or not our
model offers a realistic description of actual behavior in double auctions.

are

5. THEOREMS

In this section we trace through some of the implications of our theory. As will
become apparent, most of the action will occur when there is an “excess demand or
supply” of two or more units remaining in the auction, as there are then competitive
pressures on bids and offers. Thus we are interested in the following concepts.

DEFINITION Let D°(P) = #{V* > P}, D°(P) = #{V* > P}, §°(P) = #{M’ <
P}, and S°(P) = #{M’ < P}. Let P, = min{P : D*(P) < S°(P) - 2} and
P* = max{P : S¢(P) < D°(P) — 2}.

P, is the minimum price at which there is an excess supply of two units and P* is
the maximum price at which there is an excess demand of two units. For IPDA14 in
Appendix A, P,=4.31 and P*=3.99. In Figure 2, Appendix B, P.=101 and P*=99.
An excess of two is important to provide the competitive forces that will drive
prices. To see this, consider the following propositions. All results are stated under
Assumptions 0, 1, 1/, 2, and 2’ Remember P, is the lowest contract price or offer
observed during day d — 1 and is a “lower bound” on the agent’s support in day d.
P 4., will be the lowest contract price or offer observed during day d.

Now consider a buyer who contemplates a défection from the proposed equilibrium by refusing
to trade. This can only be valuable if it chagpges beliefs. But any one buyer knows he can cause
only one seller to remain untraded so this strategy will result in no lower offers. This structure
describes a Bayes-Nash equilibrium which produces behavior consistent with Assumptions 1, v,
2, and 2. We have not explored the possibilities for refinements.
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LEMMA 1:
a. If_EdZP-,thenf_4+1<B¢-If£¢<Puthen_B¢+1<P--
b. If -I_)d < P*, then ﬁ4+1 > 734. If -P_d > P*, then -I—Jd_H > P~

That is, there are competitive forces driving minimum contract prices below
P, and keeping them there. These same forces drive maximum contract prices
above P* and keep them above P*.

PROOF: We prove (a); the proof of (b) is symmetric.

Suppose P, > P.and Py, > P 4. As P4 > P., wehave D°(P ;) < S°(P 4)-2.
The number of trades in day d is no more than D°(P ;) as by hypothesis all
trades have been at price P, or above. Thus at t=2 there are at least two sellers
j and j' with M7, M3’ < P, who have not yet traded. Then by applying
Assumptions 2/(ii)(c) and 1’ repeatedly, we have 04(0) < P4 — 1. But then
P 4.1 < P4 which contradicts P4,y > Py.

Suppose P4, < P, and P4, , > P.. Then all trades have been at prices at or
above P,. A minor modification of the argument above then yields a contra-
diction. QED

LEMMA 2: Suppose AP; > 1; then
a. If D°(P,) > S°(Pg),then Py ., > P,.
b. If S"(P—d) > D°(P,), then _P_d+1 < Pa.

That is, there are competitive pressures driving (the lowest) contract prices up
if they are too low relative to the highest prices and driving maximum contract
prices down if they are too high relative to the lowest prices.

PROOF: We prove (a); the proof of (b) is symmetric.

Suppose that D°(P ;) > S°(Py) and P4, < P, Then there exists a time
t' such that either og4(t') = P4, or ci(t’) = Py, y. Since P, < P, and
AP, > 1, it follows from Assumption 2 (ii)(a),(c) that there exists a time { > ¢’
such that o4(f) = P, 1 was not accepted. Therefore, as APy > 1, Assumption
1(ii)(a) implies that all units V* > P, have been traded before time f. So the
number of trades before time £ is at least D°(P ;) which is > s°(Pg4). Then as
Assumption 2'(ii)(a) implies that if AP; > 1, all M7 < Py trade before any
M7 > P,, we know that all M7 < P4 have been traded before time . So all
M3 < P have been traded before time £. Then by Assumption 2/, sfi(t) and
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oa(t) > P4 forallt < { and all j. This contradicts either o4(t') = P4y < Py
orca(t) =Py, < Py QED

Buyers’ reluctance to pay too much and sellers’ reluctance to accept too little
eventually force minimum and maximum contract prices closer together. Of course,
the difference between maximum and minimum contract prices does not necessarily
decrease every day. In a day where there is excess demand at the upper bound P,
prices may rise, but they will not go above the cost of unit number D°(P). This
occurs because units up to D,(P) trade first (if AP > 1) and these can all be
traded at prices no more than M D°(B) Thus the statistic that falls, or at least does
not rise, in every period is the maximum of P and MP°(®,

DEFINITION Let ug = max{Pg4, MP" 22} and £; = min{P ;, V" P},

In IPDA14, Appendix A, suppose P ,=4.00 and P4=4.10. Then ug=4.20 since
D°(P 4)=6 and €3 = P ;=4.00 since 5°(P4)=4. The next lemma is useful in the
proof of the results of main interest further on.

LEMMA 3: If AP; > 1, then ug.; < ug, £ge1 > fa, and |ud+1 — g <
lug — Lal-

PROOF: There are two cases to consider: (1) S°(Pq) > D°(P,) and (2)
D°(P,) > S°(Pg4). We prove the lemma under case 1; the proof under case
2 is symmetric. We first need to establish:

CLAIM 1:1f AP; > 1 and S°(Pg) > D°(Py), then P ;. > €4

PROOF: Suppose that AP > 1, S°(Pg) > D°(P,), and Py, < €g.

From the definition of P ., we know that there is a time ¢’ in day d such that
04(t") = Py, or cg(t’) = Py, Thenas Py, < €y < P, there must be a
time f in day d such that og4(f) = €4 was not accepted. This implies that all
Vi > VS°(Pa) have traded before time £. So the number of units traded before
time { is at least S°(Py). By Lemma 2(b) we have P 4.1 < Pg. So the number of
units traded in day d is no more than S°(Pg). Thus the number of units traded
in day d, before time £, is S°(P4). So all M7 < P, have traded before time ¢.
Then there does not exist a seller unit M7 < P ., < {4 to offer 0g4(t’) = P 4.,
or accept a contract at cq(t’) = P4, ,. This contradicts P 4., < q. The proof
of Lemma 3 now follows directly from Claims 2 and 3.
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CLAIM 2: If APy > 1 and S°(Pg) > D°(P,), then £q,; > 4.

PROOF: By Lemma 2, ?d+1 < Fd. So So(ﬁd.ﬂ) < So(-}_).d).

This implies that VS"(Pé+1) > v5°(Pa), By claim 1, Py, > £y. Now £ayy =
Min{£d+h Vsa(P‘“)} 2 Min{_Bd-f-l’ VS“(P.,)} 2 ld-

CLAIM 3:If AP, > 1 and S°(Pa) 2 D°(P,,), then ugy < ua.

I

PROOF: By Lemma 2(b), P4s1 < Pgq and by Claim 1, P4, > {4
Min{P,, V5 P2}, Thus D°(P,.;) < Max{D°(P,),5°(Ps)} = 5°(Pa). So
MDP*Run) < M5°(P) <« P, Then ugy; = Max{P gy, MPEa)} < Py <
ug. So ugy < ug. QED

The forces embodied in Lemmas 1, 2, and 3 serve to drive contract prices
together and into the interval [P*, P,]. If supply and demand balance at this point,
prices will stay in this interval. Before proceeding to Theorem 1, we need to show
that the interval is well defined.

CLAIM 4: P, > P~

PROOF: Suppose P* > P,. Then S¢(P,) < D°(P,)—2and D°(P,) < §°(P.)—
2. So D°(P,) +2 < S°(P.) < S°(P.) < D°(P,) — 2. This implies D°(P,) <
D°(P,) which is false.

THEOREM 1: If D¢(P*) = S¢(P.), then there exists a day d* < oc such that
P*<P,< P, and P* <Py <P, for all d > d*.

PROOF: As the price set—the integers in [0, P]—is finite, Lemma 1 implies
that there is finite day d such that P, < P, and P4 > P* for all d > d. Then
by Lemma 3 there is a finite day d* > d such that [Py,, P4.) C [P*, P.] and
AP, <1.

- ager g Wiy
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We now prove the theorem by an induction argument. Suppose [P4,Pa] C
[P, P.] for some day d > d*. We need to show that this implies [P 4,1, Pa+1) €
[P*, P.]. Suppose not, say P 4.1 < P Then there is a time t’ in day d such
that o4(t’) < P* or c4(t’) < P*. As P* < P, there is a time t > t' such
that o4(f) = P* was not accepted. As P* < P, this implies that all units
V¢ > P* have traded before time {. So the number of units traded is at least
DS(P*) = S°(P.). As P, > P,, this implies that all units M? < P, have
traded before time £. Then there is no seller with a unit M J <« P* < P, to offer
04(t') < P* or to accept c4(t’) < P* The proof that P 4.1 < P. is symmetric.
By the induction argument above and Lemma 1, we have a day d* < oc such
that P* < P, < P, and P* <Py < P, for all d > d* QED

Theorem 1 applies to experiments which have a Walrasian equilibrium price
Pe and quantity Q¢ These experiments fall into three groups. Firstly, if there are
multiple units at the Walrasian equilibrium price (and if De(Pe—1) = S¢(P+1)),
then Theorem 1 predicts that prices will eventually remain within one cent of P*
(as P, = P*+1, P* = P* — 1) and that quantity traded will be at least Q¢ —1 and
no more than the maximum of S¢(P, +1) and D*(P* —1). Secondly, if there is only
one unit at the Walrasian equilibrium price and D¢(P*) = S¢(P,), the situation
in IPDA14 in Appendix A, then Theorem 1 predicts that eventually the maximum
price will be no more than one cent above the minimum of the value of the first infra-
marginal buyer (V2 1) and the cost of the first extra-marginal seller (M Q°+1),
For IPDA14, this is 4.30. The prediction for the minimum price is symmetric. In
the limit, prices tend to keep out extra-marginal units and to keep in infra-marginal
units. For this class of experiments, the prediction is again that the quantity traded
will eventually remain in the interval [Q® — 1, max{S°(Ps + 1), De(Pr — 1)}
Finally, if the experiment presents an interval of prices, any of which can be a
Walrasian equilibrium, with no units at any of these prices and if D°(P*) = S¢(P,),
the predictions of Theorem 1 are again that prices eventually remain in [P*, P.].
However, it is possible to design payoff schedules with one unit at the Walrasian
equilibrium or with no units at any Walrasian equilibrium so that De(P*) # S¢(P.).
This case and cases where there is no Walrasian equilibrium are addressed by the
following theorem.

THEOREM 2:

a. If D¢(P*) > S°(P.), then there exists a day d* < oo such that
P* <P < P.and P* <Pg < MPP") for all d > d*.

b. If S¢(P,) > D°(P*), then there exists a day d* < oo such that
VSP) <P, <P, and P* <Py <P, foralld>d"
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PROOF: We prove part (a); the proof for (b) is symmetric. We first need to
establish the relationship between P*, P,, MP*(P*) and VS°(Ps),

CLAIM 5: If D(P*) > S°(P.), then MP“(P1).> P, > V57 (P) > p=.

PROOF:
i. Suppose P, > MP°(P*) Then S¢(P,) > D°(P*). A contradiction.

ii. Suppose V5°(P) > P, Then D°(P,) > S¢(P.) 2 §°(P.). But by definition,
De(P,) +2 < S°(P.).

iii. Suppose P* > VS°(P) Then D°(P*) < S°(P.). A contradiction.

By the argument in Theorem 1 we know that there is a day d* < oo such that
(P3P} C [P* P.]. By Claim 5, MD*(P") > P,. So [Py, P3] C [P, MP"(P7)).
The proof now proceeds by induction. We need to show that if [P, Pa] C
[P*, MD*(P*)], then [P 4, ;, Pas1] C [P*, MP*(PV)]. There are two cases to con-
sider: (1) Pg < P, and (2) P4 > P..

Case 1: Py < P.. As MP*(P") 5> P, > Py and V5°(P) > P* by Claim 5, an
argument similar to the proof of Theorem 1 shows that Pa1 < M D*(P*) and
Py, 2P

Case 2: Py > P.. We know that P, < P. for all d > d*, so Pa > P.
implies that APy > 1. So by Lemma 3, ugy; < ug. By definition ug =
Max{P4, MP"4)} and by hypothesis P4 > P*. So D°(P ) < D°(P*). Thus,
MP° By < MD°(P") < MD(P") By hypothesis Py < MPF"). So ug <
MDP*(P") By definition ugy; = Max{Pas1, MP*Bar1)} Now ugsy < ug <
MDC(P.)‘ So ﬁd—H S MDC(P‘). '

We also need to show that P, , > P* Suppose not. Then Py < P.. This
requires S°(P,) > D°(P,). Thus, S¢(P.) > S°(P.) > S°(Pg4) > D(Py) 2
De(P*). This contradicts D°(P*) > S¢(P.). So P4y 2 P*.

Theorem 2 now follows from the induction argument above and Lemma 1. QED

Although Lemmas 1, 2, and 3 imply that prices are eventually contained in
interval [P*, P,), they need not stay in this interval if supply and demand are

not equal there. For example, if D¢(P*) > S°(P.) and low-value buyers (those
with P* — 1 < V' < P,) trade first, the remaining high-value buyers may bid
prices up. However, they need not, and so will not, bid more than M D(P*) in
order to complete a trade. So the range of prices could expand to be [P*, M P*(P*)],



Theories of Price Formation and Exchange in Double Oral Auctions 83

In subsequent days it will shrink until it is again contained in [P P.]. It seems
unlikely that this process would continue, and our theory does not predict that it
will, only that it might. In fact, Lemma 3 implies that for all supply and demand
configurations if all extra-marginal units are excluded by [P 4, ﬁd], then the interval
will shrink to at most one cent and then remain fixed.

6. COMPARISONS OF THE PREDICTIONS WITH THE DATA

Our prediction of convergence seems consistent with the experimental data, but it
is not directly testable with these data as the number of repetitions necessary for
convergence is not specified. In any case, obtaining the competitive equilibrium in
the limit is only a first test of a theory of price formation in double oral auctions. We
have rejected the models considered in Section 3, at least in part, on the basis of their
incorrect predictions about dynamics. In this section we compare the predictions
of our model with experimental data. There are three categories of data for which
our theory has implications: The sequénce of minimum and maximum prices, the
sequence of trading partners, and the number of units traded.

The three lemmas in Section 5 directly yield predictions about the dynamics
of minimum and maximum prices. Lemma 1 implies that these prices move to
bracket the competitive equilibrium price and that once this is accomplished, the
theoretical equilibrium price remains in the interval (P, P). Lemmas 2 and 3 imply
that minimum and maximum prices respond to the forces of demand and supply.
The prediction is that the minimum price will rise if demand at P exceeds supply
at P and that the maximum price will fall if supply at P exceeds demand at P.
In the excess demand case (D°(P) > 5°(P)), the maximum price may rise, but
the prediction is that it will go no higher than the level necessary to allow the
D°(P)th unit to trade. For the excess supply case, the prediction is that although
the minimum price may fall it will not go below V5°(P),

Remember that P, is the lowest contract price or offer that occurred during
the day before d. P, is the highest contract price or bid observed during the day
before d.

PREDICTION 1. Prices (See Lemmas 1, 2, and 3):

i. fP,>P, thenP, <P, IfP;<P, then P, < F..

ii. IfPy< P* then Pgi1 > Pg. If Py > P* then Py > P~

iii. If APy >1and D°(P,) > S°(Pa), then Py, > P and Pyyy < ua.
iv. IfAP; > 1and S°(Py) > D°(P,), then P4,y < Pgand Py | > €a.



84 David Easley and John O. Ledyard

TABLE 1 Violation Percentages’

o sy gl A

Descriptors Analysis
Experiment Exp Marg Com Units Q° NYSE Que Price Seq Quant
IPDAS No 1 5 8 6 Yes No 139 O 11.1
IPDA9 No 1 5 8 6 Yes No 94 1.6 0
IPDA10 Yes 1 5 10 86 Yes No 63 0 0
IPDA11 No 1 5 10 8 Yes No 188 1.3 0
IPDA14 Yes 1 5 8 6 Yes No 94 O 0
IIPDA14 No 3 10 21 15  Yes No 125 O 0
IIPDA22 No 0 10 16,11 11 No No 3.1 NA 12.5
HPDA25 Yes 2 10 12 7 No Yes 21.9 0.8 12.5
ITPDAS57 No 3 10 21 15 Yes Yes 16.7 1.0 8.3
Average 12.7 0.7 5.3

1

PDA =Plato Double Auction
Exp =experienced subjects (have participated in another PDA)
Marg =number of extra marginal units
Com =commission in cents per unit traded
Units =number of units on each side of the market
Q° =competitive equilibrium quantity
NYSE =New York Stock Exchange rules (new bids and offers must
improve on outstanding bids and offers)
QUE =electronic queuing of bids and offers (see Smith and Williams?!)
Price =% violation of price predictions
Seq =% violation of trading sequence predictions

Quant =% violation of quantity traded predictions

Our model yields no predictions for day 1 of any experiment. In any experiment
in which supply or demand was shifted, we treat the first day after the shift as
day 1 of a new experiment. In each non-initial day of an experiment, we have
four possible violations of price predictions: violations of 1(i) and 1(ii), and

the two predictions of either 1(iii) or 1(iv). So, in an experiment running for
ten days with no shifts, there are 36 possible price violations. The entry for price
violations is the number of violations divided by the number of possible viola-
tions. In each non-initial day the number of possible trading sequence viola-
tions is the number of buyer plus seller units (n + m). The number of actual
violations is the number of units traded out of order. In each non-initial day
there is one quantity prediction, and thus one possible quantity violation.
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TABLE 2 Price Violations

#
Price violations of z§  Percentage of price violations

or less not counted over nine DOAs
z = 0.01 6.3
z = 0.05 3.3
z=0.10 1.3
R

Our prediction about the sequence of trading partners follows from the proofs
of the Lemmas. It is essentially that sellers with costs below P trade before those
with costs above P and buyers with values above P trade before those with values
below P.

PREDICTION 2. Trading Sequence:

i, If APd > 1: _
All sellers with cost below P, trade before any sellers with cost at or above Pg.

All buyers with value above P ; trade before any buyers with value at or below
P,

ii. IfAP;<11:
All sellers with cost at or below P4 trade before any sellers with cost above Pg.
All buyers with value at or above P ; trade before any buyers with value below
P,

Our prediction about the number of units traded is that it will be at least
the competitive equilibrium for demand and supply curves truncated at P and P,
respectively, less one unit.

PREDICTION 3. Quantity Traded:
The quantity traded in day d will be Q4 > Max{K : VE > MK} -~ 1 where
VK =Min{P,, VE}for K=1,...,nand M = Max{P 4, MK}for K =1,...,m.

Table 1 summarizes, for nine DOA experiments, violations of our predictions
about prices, sequence of trades, and number of units traded as a percentage of total
possible violations. This table is based on data from Williams,?? and on unpublished
data which were made available by Vernon Smith. We realize this table is neither
easy to understand nor conclusive empirical verification of our theory. We offer it
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only as supporting evidence of plausibility. We have yet to see a DOA experimeny
which is much different in its violations of Predictions 1 to 3 than those in Table 1.

To see the total number of price violations in perspective, Table 2 illustrates the
margins of error. This table reports the total number of violations of our price pre.
dictions (over all nine experiments) which were more than z cents, as a percentage
of the total number of possible violations of our price predictions.

To put sequence and quantity violations in context, it is useful to compare them
with the violations of the sequence and quantity predictions of the Marshallian the-
ory and the sequence predictions of the game theory approach. The Marshallian
theory predicts that units will trade in the order of value and that all profitable
trades will occur. The violations of this prediction as a percentage of possible vi-
olations in IPDAS is 42.5%. The game theory approach?® predicts that units will
trade in the order of value but yields no further prediction on the number of trades.
The violations of this prediction as a percentage of possible violations in IPDAS is
29.4%.

7. FURTHER EXPERIMENTS

There is now a role for further interaction between theory and experiments. The
class of experiments described in Section 6 motivated our theory, and it in turn
suggests several experiments which could lead to refinements or rejection of the
theory. There are several aspects of our theory which could be tested. Firstly, we
do not assume that traders’ reservation prices and bids or offers converge to their
true values at the end of each day. The data that we have seems to reject such
an assumption. However, without this assumption we can establish convergence
only to an interval determined by P, and P* Our theory admits as an equilibrium
a situation in which one extra-marginal unit is included or in which one infra-
marginal unit is excluded. For example, Theorem 1 applies to the demand and
supply configuration in Figure 1 of Appendix B to predict equilibrium in the interval
[114,148]. The placement of the first extra-marginal units in that figure has no effect
on our equilibrium prediction. Charles Plott and Chris Worrell have run a DOA
experiment using the configuration of Figure 1. Their data suggest that prices
converge into the interval [133,139] determined by the first extra-marginal units.
This conclusion does not reject our theory, but it does suggest that the theory might
be refined to produce sharper convergence results.

Secondly, we have refrained from placing any direct assumption on the relative
(between agent) rankings of true values and reservation prices. Possible ranking
hypotheses on buyers’ reservation prices include (1) if V¥ > V7, then ri(t) > r(t)
and (2)if V' > Pyand V; < P, thenri(t) > rﬁ(t). Hypothesis 1 is clearly rejected
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py the data, but whether hypothesis 2 is rejected depends on one’s standard of ac-
ceptance- The absence of a ranking hypothesis is responsible for the relatively weak
prediction of Theorem 2. In DOAs where D*(P*) # S°(P.), our theory predicts
convergence into the interval [P* P.], but it then admits the possibility of cycles
petween prices in this interval and prices as low as ySe(P.) if §¢(P,) > D°(P*)
or prices as high as MPD(P*) if D¢(P*) > S¢(P.). In the presence of either rank-
ing hypothesis (and a symmetric hypothesis on sellers’ reservation prices) cycles
would not occur and prices would remain in [P* P,]. We have some data about
experiments where our theory admits the possibility of cycles. In both IPDA8 and
[PDAY (reported in Section 6), S°(P.) > D°(P*). In neither of these experiments
do we see cycles; prices seem (o remain approximately in [P* P.]. However, the
extra-marginal seller unit at P. — 1 is occasionally traded, so it is possible that
cycles would have arisen had the experiments continued beyond ten days.!*. This
suggests two possible further experiments. Firstly, IPDAS could be run for more
days to decide whether cycles will appear. Secondly, an experiment with a design
more likely to produce cycles could be run. The supply and demand configuration
of Figure 2 in Appendix B is such a design. The prediction of Theorem 2 for this
configuration is that prices will remain in the interval [vS°(F), p,] = [70,101]. Our
conjecture is that in the experiments any cycles would eventually disappear, with
prices remaining in [P*, P.] and perhaps following a time path during each day
starting at P*, and then rising during the day. By offering a small discount (to P*)
early in the trading day, infra-marginal sellers could insure that they complete a
trade. Prices would then rise by one or two cents as marginal traders complete their
trades. If this occurs, it suggests that the theory might be further refined.

There are several other experiments which could lead to refinements or rejection
of our theory. Firstly, our theory is silent about the fine details of organizing a DOA.
All that counts is that traders can make bids or offers and acceptances, and that
they are informed of others’ bids, offers, and acceptances. Thus the predictions of
the theory are unchanged by the use of New York Stock Exchange rules, electronic
queues, or other details. However, the data are not unchanged by these details (see
Smith and Williams?!). It may be that sharper predictions would result if these
details were taken into account. Secondly, the theory does not apply to experiments
in which one side of the market is not allowed to bid or offer. See Plott and Smith!®
for some of these experiments. Third, the theory does not yield predictions about
the effect of shifts in supply and demand curves. There is now data from experiments
in which supply and demand curves are shifted systematically. The theory would
need to be refined to yield useful predictions about the effect of such changes in
market conditions.

'141p IPDAS the extra-marginal unit at P. — 1 is seller 2's second unit. This unit is traded in
both days 9 and 10 of the experiment.
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The methodology of using experiments to test the predictions of theory can
also be applied to the alternative theories that we have described. For instance,
Wilson’s game theoretic model of DOAs does not directly apply to the existing DOA
experiments, but a DOA experiment could be designed to test the theory. Trader’s
values and costs could be drawn independently across days from distributions which
the traders know, risk attitudes could be controlled for, and the experiment could
be repeated for a number of days to allow for learning about the game and about
strategies. Wilson'’s predictions could then be compared to data from the final day
of the experiment.

8. CONCLUSION

The theory presented here is deterministic and, although it does not completely
describe precise paths of bids, offers, and contracts, it does place fairly tight bounds
on these data. One observation not in accord with these bounds is grounds for
rejection of the theory, and in fact there are a number of such observations. However,
the low percentage of observations which violate the obvious implications of the
theory seems acceptable for a theory which yields fairly precise predictions about
prices and trades.

The potential importance of this theory is not just that it seems to describe
what happens in DOA experiments, but also that it is the beginning of a positive
theory of how market prices are formed and of how they adjust to changes in
demand and supply conditions. The question of price formation has a long history
of ad hoc and unsuccessful attempts at an answer. Our theory is also ad hoc in
the sense that we make assumptions on individual behavior which are not derived
from an optimizing model. However, our assumptions seem sensible, are consistent
with the behavior implied by at least one optimizing, game-theoretic model and,
more importantly, they seem to do a reasonable job of describing actual bids, offers,
and contracts. There is now a target for experimentalists to reject with data or for
theorists to improve on by obtaining a better fit to the data.

9. SOME ACKNOWLEDGMENTS AND A HISTORICAL NOTE

This paper benefited from discussions in seminars at Cornell, Northwestern, and
Stony Brook, and an NSF Conference on Experimental Economics at the University
of Arizona. It has also been affected by several referees, some of whom have been
helpful in forcing us to more clearly present our ideas. This version is significantly
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gifferent from earlier versions. We would like to thank Vernon Smith and Arlington
williams for making data on their Plata DOA experiment data available to us.

We would like to thank the editors for inviting us to participate in this volume.
We thank John Rust for encouraging us to expose our theory in the testbed of the
oomputerized Double Auction Market at the Santa Fe Institpte. We feel reasonably
happy with our fifth place finish and like to think that even though our theory
was designed for continuous-time open-outcry systems rather than the sychronized
double auction, it (the theory) held up pretty well. We thank Dan Friedman for
not forgetting our paper and for forcing us, once again, to drag it out of retirement.
Finally we thank Bob Wilson for his insights and Vernon Smith and Arlington
Williams for providing data and support in the early days of 1980-81.

Because the first version of this paper appeared in 1981 and the last significant
revision was made in 1988, some of the references and most of the data may seem
somewhat outdated. The task of constructing a new type of theory to explain a new
type of data derived from nascent experimental markets was actually begun by us
in 1978. Since 1981, game theory arose as a new paradigm in economics and many
editors were loath to publish a non-optimizing base theory such as that we had
proposed. Our last 1988 revision was written to respond to these concerns. Since
then, game theorists analyzing dynamics have turned from models with common
knowledge and Bayes equilibrium to models of Bayesian learning, fictitious play,
and other non-optimizing models of behavior which do not require, for example,
common knowledge of rationality. We are glad others are pursuing the path we took
in 1980. We believe that many of these “learning” models are consistent with our
assumptions, but that is another paper.

Not only has theory changed since 1981 but experimental technology has sig-
nificantly advanced. As one can see, from articles in this volume, the simple DOA
experimental market we have described in this paper has become more sophisti-
cated and interesting. In our sporadic efforts at casual empiricism, we have yet to
see data in the more recent experimental markets that significantly differs from
the predictions of our theory. For example, DOA’s where commissions are not paid
look like the DOA’s we analyze. Of course what is needed is a serious empirical
study to see whether our impressions are valid. As far as we know, our challenges
to theorists and experimentalists in Sections 7 and 8 remain unaccepted. We hope
someone responds. '
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APPENDIX A

TABLE 3 Values and Costs for DOA #IPDA14
“

Week 1 Week 2
Unit 1 Unit2 Unit1 Unit 2

BYR1 5.20 3.80 3.70 3.60
BYR2 5.00 4.00 3.80 3.50
BYR3 4.80 4.20 3.90 340
BYR4 4.60 4.40 4.00 3.30
SLR1 3.70 4.40 3.10 3.30
SLR2 3.80 4.30 2.90 3.50
SLR3 3.90 4.20 2.70 3.70
SLR4 4.00 4.10 2.50 3.90
R
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g TABLE 4 Period 9

S

ey MKR TM BIDS OFFERS TKR TM
1 B2 297 3.30
2 Bi 295 3.34
3 B2 292 3.3
4 S4 289 3.45 B3 285
5 B2 281 3.30
6 B4 278 3.35
7 B2 275 3.36
8 S3 274 3.50
9 Bl 268 3.39
10 B4 258 3.0 52 252
11 S1 254 3.45 *
12 B2 247 330
13 Bl 245 340
14 S3 244 3.50
15 S1 236 3.45
16 B2 231 341
17 S3 191 3.44
18 S1 181 343 B2 154
19 B4 151 3.30
20 B2 147 3.31
21 S2 146 4.50
22 Bl 146 340
23 B2 140 3.41
24 S1 136 3.45 Bl 68
25 B2 122 3.42 *
26 Bl 112 343 *
27 B2 106 3.44 *
28 S2 63 4.50
29 B4 62 3.30
30 B1 61 3.40
31 S3 57 3.49
32 B2 55 341
33 B1 45  3.43
34 B2 41  3.44
35 B2 23 345 S3 17
36 B4 11 3.30
37 S2 10 3.50 Bl 0
38 B1 8 3.40 *

91
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TABLE 5 Summary Data from IPDA14

- I

Contract Price  Buyer  Seller

Day 1 4.25
4.20
4.50
4.40
4.30

Day 2 4.35
4.30
4.30
4.30
4.25

Day 3 4.25
4.35
4.30
4.27
4.25

Day 4 4.30
4.39
4.30
4.26
4.25
4.20

Day 5 4.30
4.26
4.35
4.26
4.25

Day 6 3.35
3.30
3.35
3.32
3.35

Day 7 3.31
3.35
3.40
3.38
3.45
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TABLE 5 Summary Data from IPDA14

{cont'd.)
Contract Price  Buyer  Seller
Day 8 3.40 4 2
3.40 1 1
3.40 1 1
3.40 3 4
3.40 2 3
Day 9 3.45 3 4
3.40 4 2
3.43 2 1
345 1 1
345 2 3
3.50 1 2
Day 10 3.41 2 2
3.44 1 4
3.45 4 1
3.45 1 3
3.50 3 1
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APPENDIX B
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FIGURE 1 An induced demand-supply schedule.
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FIGURE 2 Supply and demand schedules for further experiments. Data is from an
unpublished experiment by Charles Plott and Chris Worrell; reprinted by permission of

the authors.
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